Linear Models in Medical Imaging

John Kornak
MI square
February 22, 2011

Acknowledgement / Disclaimer

Many of the slides in this lecture have been adapted from slides available in talks available on the SPM web site.

Overview

- Motivation
- Linear model formulation
- Region of interest analyses
- Pixel/voxel based analyses
- Multiple comparisons for images
- Bayesian image analysis methods

Motivation

- Imaging data statistical methods to look for "regional effects"
- Tissue differences between groups or over time – VBM, TBM (voxel/tensor-based morphometry)
- PET (positron emmission tomography), fMRI (functional MRI) – determine "activation" in the brain due to thought, stimulus or task
- Diffusion (DWI, DTI, tractography), Bone mineral density etc. etc.

FMRI Data:

Set of Volumes (over time) <u>or</u> Set of Time-Series (over space)

Software etc.

SPM – PET, fMRI, VBM and TBM, EEG/MEG (http://www.fil.ion.ucl.uk/spm/ needs Matlab)

FSL – fMRI primarily + DTI (http://www.fmrib.ox.ac.uk/fsl/)

R – AnalyzeFMRI package + linear models in general (http://www.r-project.org/ and then go to your nearest CRAN mirror)
Also, check "Venables and Ripley" Splus book + many R books (see R web site) + online tutorials

Challenges

- Generating suitable (statistical) imaging models
- Dealing with highly multivariate responses (curse of dimensionality)
- Defining imaging "hypotheses"
- Creating computationally efficient analysis procedures

Aims of Statistical Modeling

- Summarize data
- Estimation: point and interval estimates
- Inference: hypotheses / relationships
- Prediction

Aims of Statistical Modeling

- Summarize data
- Estimation: point and interval estimates
- Inference: hypotheses / relationships
- Prediction

Statistical Modeling Strategy

- Propose a model for the data
- Fit the model
- Assess the model's adequacy
- Fit other plausible models
- Compare all fitted models
- Interpret the best model

Statistical Models: Definitions

- Univariate response variable y_i (for exp. unit i)
- Covariates $(x_{i1}, x_{i2},..., x_{ik}) = \mathbf{x}_i^T$ (variables of interest and "nuisance" variables)
- Data is: $\{y_i, \mathbf{x}_i^{\mathrm{T}}; i = 1,...,n\}$, n experimental units

Continuous covariates: e.g. age, blood pressure etc., (random or controlled)

Factors: e.g. diagnosis, gender, drinking level (low, medium, high) etc.

The (General) Linear Model

A simple *linear model* might take the form:

$$y_{i} = \beta_{1} + x_{i2}\beta_{2} + x_{i3}\beta_{2} + ... + x_{im}\beta_{m} + \varepsilon_{i}$$

e.g.

$$y_{i} = \beta_{mean} + x_{i,age} \beta_{age} + x_{i,gender} \beta_{gender} + ... + x_{i,diagnosis} \beta_{diagnosis} + \varepsilon_{i}$$

$$\varepsilon_{i} \sim N(0, \sigma^{2}), \quad i.i.d. \quad i = 1,...,n$$

i.i.d. = independently and identically distributed

The (General) Linear Model

For univariate data:

$$y_i = \mathbf{x}_i^{\mathrm{T}} \boldsymbol{\beta} + \boldsymbol{\varepsilon}_i, \quad i = 1,...,n$$

$$\mathbf{\beta} = (\beta_1, ..., \beta_m)^{\mathrm{T}}$$
 is a set of unknown parameters

or in matrix notation

$$\mathbf{y} = \mathbf{X}^{\mathrm{T}} \boldsymbol{\beta} + \boldsymbol{\epsilon}$$

This can be extended to a multivariate response

$$\mathbf{Y} = \mathbf{X}^{\mathrm{T}}\mathbf{B} + \mathbf{E}$$

Ex. Hippocampal Volume

HCV ~ Age + Diagnosis

(Wilkinson notation)

Diagnosis can be normal control (NC) or Alzheimer's disease (AD)

Ex. Hippocampal Volume

HCV ~ Age + Diagnosis + Age*Diagnosis

(Wilkinson notation)

Diagnosis can be normal control (NC) or Alzheimer's disease (AD)

Structural T1 weighted MRI's

Hippocampal volumes manually traced

Volume measure = response for each subject

Disease status encoded 1 for AD and 0 for NC (the $x_{diag.}$ term)

$$y_{i} = \beta_{1} + x_{i,age} \beta_{age} + x_{i,diag.} \beta_{diag.} + x_{i.age} x_{i,diag.} \beta_{inter} + \varepsilon_{i}$$

$$\beta_{age} = 0, \beta_{diag.} = 0, \beta_{inter} = 0$$

$$y_{i} = \beta_{1} + x_{i,age} \beta_{age} + x_{i,diag.} \beta_{diag.} + x_{i.age} x_{i,diag.} \beta_{inter} + \varepsilon_{i}$$

$$y_i = \beta_0 + x_{i,age} \beta_{age} + x_{i,diag.} \beta_{diag.} + x_{i.age} x_{i,diag.} \beta_{inter} + \varepsilon_i$$

$$y_i = \beta_0 + x_{i,age} \beta_{age} + x_{i,diag.} \beta_{diag.} + x_{i.age} x_{i,diag.} \beta_{inter} + \varepsilon_i$$

$$y_{i} = \beta_{1} + x_{i,age} \beta_{age} + x_{i,diag.} \beta_{diag.} + x_{i.age} x_{i,diag.} \beta_{inter} + \varepsilon_{i}$$

Case 4

$$\beta_{age} \neq 0, \beta_{diag.} \neq 0, \beta_{inter} \neq 0$$

Linear models can be more general

- only needs to be linear in the parameters: β

We can have:

$$y_{i} = x_{age}\beta_{1} + x_{age}^{2}\beta_{2} + \exp(x_{height})\beta_{3} + x_{age}^{\pi}x_{height}\beta_{4} + \varepsilon_{i}$$

$$i = 1,...,n$$

Estimation

Minimize squared error (Least Squares Error) = Maximum Likelihood Estimation for linear model

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

$$E(\hat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$$

$$V(\hat{\boldsymbol{\beta}}) = \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1}$$

Estimate σ^2 by

$$\hat{\sigma}^2 = \frac{\text{sum of squares error}}{n}$$

or divide by *n*-1 for unbiased estimate

Inference - Model Comparison

Take linear model

$$\mathbf{y} = \mathbf{X}^{\mathrm{T}} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

And add constraint $A\beta = c$

this defines a new model that is a simplification of the previous one

Inference - Model Comparison

E.g., cf. model
$$y_i = \beta_1 + \beta_2 x_{i1} + \beta_3 x_{i2} + \varepsilon_i$$

to simplification with $\beta_3 = 0$

$$(0,0,1) \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} = 0$$

i.e.
$$y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$$

i.e.
$$A\beta = c$$

What about $\beta_2 = 0$ & $\beta_3 = 0$?

$$\mathbf{A}\boldsymbol{\beta} = \mathbf{c} \quad \Rightarrow \quad \left(\begin{array}{c} 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right) \left(\begin{array}{c} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \\ \boldsymbol{\beta}_3 \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right)$$

And what about $\beta_2 = \beta_3$?

$$\mathbf{A}\boldsymbol{\beta} = \mathbf{c} \qquad \Rightarrow \qquad \left(\begin{array}{c} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \\ \boldsymbol{\beta}_3 \end{array} \right) = 0$$

Are 2 different conditions equivalent? E.g. is the activation effect: reading a word vs imagining the object equal?

Definition: Linear model nested in another if 1st model can be obtained by linear constraint on the 2nd

Nesting tree:

F-test for General Linear Hypothesis

$$\mathbf{y} = \mathbf{X}^T \boldsymbol{\beta} + \boldsymbol{\varepsilon} \quad \boldsymbol{\varepsilon} \sim N_n \left(0, \boldsymbol{\sigma}^2 \mathbf{I}_n \right)$$

Consider

$$H_0: \mathbf{A}\boldsymbol{\beta} = \mathbf{c}$$

This is the General Linear Hypothesis

Under H_0 , i.e., $\mathbf{A}\boldsymbol{\beta} = \mathbf{c}$

$$F = \frac{(\text{Dev}_{\text{nested}} - \text{Dev}_{\text{larger}}) / (p_{\text{larger}} - p_{\text{nested}})}{(\text{Dev}_{\text{larger}}) / (n - p_{\text{larger}})} \sim F_{p_{\text{larger}} - p_{\text{nested}}, n - p_{\text{larger}}}$$

p denotes the number of model parametersn denotes the number of data pointsDev = Deviance = sum of squares of residuals

Tests ratio of variances

FMRI Data:

Set of Volumes (over time) <u>or</u> Set of Time-Series (over space)

Estimation

The estimation entails finding the parameter values such that the linear combination *best* fits the data

Parameter Estimates

 $\mathbf{y} \approx \mathbf{X}^{T} \mathbf{\beta}$ SPM View

Note:

We trust: Long series with large effects and small error

Spatial Modeling

Spatial Hypotheses

Question - how do we extend from standard univariate hypotheses to answering spatially motivated questions?

Not easy - curse of dimensionality (millions of voxels)

in 1D it makes sense to infer A is less than B, but what is the equivalent in 2D?

Spatial Testing Solutions

- Summarize the image into one dimensional quantities for testing (e.g. region of interest analysis)
- Consider the overall test as a combination of individual voxel tests (voxel based analysis)
- Perform shape/object analysis on objects defined via landmarks
- Build Bayesian image analysis models

Spatial Testing Solutions

- Summarize the image into one dimensional quantities for testing (e.g. region of interest analysis)
- Consider the overall test as a combination of individual voxel tests (voxel based analysis)
- Perform shape/object analysis on objects defined via landmarks
- Build Bayesian image analysis models

Voxel based analysis

Each voxel obtains a test statistic from the linear model, e.g. t or F

Forms statistical maps of the statistics

Hypothesis Testing

- Null Hypothesis H_0
- Test statistic T
 - − t observed realization of T
- α -level

- Level α = Pr($T > u_{\alpha} \mid H_0$)
- Threshold u_{α} controls false positive risk at level α

Multiple Comparisons Problem

Which of 100,000 voxels are significant?

 $-\alpha = 0.05 \Rightarrow$ 5,000 false positive voxels

Assessing Statistic Images

Where's the signal or change?

High Threshold

Good Specificity

Poor Power (risk of false negatives)

Med. Threshold

Low Threshold

Poor Specificity (risk of false positives)

Good Power

How can we determine a sensible threshold level?

Multiple Comparison Solutions: Measuring False Positives

- Familywise Error Rate (FWER)
 - Familywise Error
 - Existence of one or more false positives
- False Discovery Rate (FDR)
 - **FDR** = E(V/R)
 - R voxels declared active, V falsely so
 Realized false discovery rate: V/R

Bonferroni Correction

FWE, α , for N independent voxels is $\alpha = Nv$ (v = voxelwise error rate)

To control FWE set $v = \alpha / N$

Independent Voxels

100 90 80 70 60 100 90 10 20 30 40 50 60 70 10 10 20 30 40 50 60 70 80 90 100 Pixel position in X

Spatially Correlated Voxels

Bonferroni is too conservative for brain images

FWER MCP Solutions:Random Field Theory

- Euler Characteristic χ_{u}
 - Topological Measure
 - #blobs #holes
 - At high thresholds, just counts blobs

-60 -40 -20 0 20 4

- **FWER** = $Pr(Max voxel ≥ u | H_o)$

= $Pr(One or more blobs | H_o)$

 $Rr(\chi_u \ge 1 \mid H_o)$

 $\Rightarrow E(\chi_u \mid H_o)$

No holes

Never more than 1 blob

Random Field Theory Limitations

- Multivariate normality (Gaussianity)
 - Virtually impossible to check
- Sufficient smoothness
 - FWHM smoothness 3-4 × voxel size
- Smoothness estimation
 - Estimate is biased when images not sufficiently smooth
- Several layers of approximations

Multiple Comparisons Solutions: Measuring False Positives

- Familywise Error Rate (FWER)
 - Familywise Error
 - Existence of one or more false positives
 - FWER is probability of familywise error
- False Discovery Rate (FDR)
 - FDR = E(V/R)
 - -R voxels declared active, V falsely so
 - Realized false discovery rate: V/R

False Discovery Rate

 For any threshold, all voxels can be crossclassified:

	Accept Null	Reject Null	
Null True	V_{0A}	V_{OR}	
Null False	V_{IA}	V_{IR}	
	N_A	N_R	

Realized FDR

$${\bf rFDR} = V_{0R}/(V_{1R}+V_{0R}) = V_{0R}/N_R$$
 — If $N_R=0$, ${\bf rFDR}=0$

- But only can observe N_R , don't know V_{IR} & V_{OR}
 - We control the expected rFDR

$$FDR = E(rFDR)$$

False Discovery Rate Illustration:

Noise

Signal

Signal+Noise

Control of Per Comparison Rate at 10%

11.3%

11.3%

12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2%

9.5%

Percentage of Null Pixels that are False Positives

Control of Familywise Error Rate at 10%

FWE

Occurrence of Familywise Error

Control of False Discovery Rate at 10%

6.7%

10.4%

14.9%

9.3%

16.2% 13.8% 14.0% 10.5%

8.7%

Percentage of Observed "Above Threshold" Pixels that are False Positives

Benjamini & Hochberg Procedure Journal of the

Journal of the Royal Statistical Society – Series B (1995) 57:289-300

- Select desired limit q on FDR
- Order p-values, $p_{(1)} \le p_{(2)} \le ... \le p_{(V)}$
- Let r be largest i such that

$$p_{(i)} \le i/V \times q/c(V)$$

 Reject all hypotheses corresponding to

$$p_{(1)}, \ldots, p_{(r)}$$

NB, no spatial consideration

Also, Non-Parametric Testing

- If H_0 is true then time order irrelevant (if noise really iid)
- Therefore permute the timepoints and obtain test statistics
- If true test statistic is extreme compared to others then reject H_0

Types of Spatial Inference

- Individual voxel level
- Cluster level
- Set level
- Bayesian model based

Voxel-level Inference

- Retain voxels above α -level threshold u_{α}
- Gives best spatial specificity
 - H_0 at a single voxel can be rejected

Cluster-level Inference

- Two step-process
 - Define clusters by arbitrary threshold $u_{\rm clus}$
 - Retain clusters larger than α -level threshold k_{α}

Cluster-level Inference

- Typically better sensitivity
- Worse spatial specificity
 - The null hyp. of entire cluster is rejected
 - Only means that one or more of voxels in cluster active

Set-level Inference

- Count number of blobs c
 - Minimum blob size k
- Worst spatial specificity
 - Only can reject global null hypothesis

Here c = 1; only 1 cluster larger than k

Review: Levels of inference & power

A flexible Bayesian Approach

- Model the form of activity
- Provides an "adaptive thresholding" approach

Bayesian Model

$$y = zx + \varepsilon$$

y = data, parameter estimates of statistics

z = binary activation map - modeled as a MRF

x = activation level field – modeled as a MRF

 \mathcal{E} = residual error

MRF = Markov Random Field (similar random field but defined on a lattice)

Model Illustration

Model Illustration

Other Topics and Omissions

- Hemodynamic response function
- Multiple subjects (random and mixed effects models)
- PCA, ICA
- Multivariate analysis with variogram modeling
- Space-time modeling